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Description
This project aims at giving machine-checked undecidability proofs of undecidability of various
problems regarding contextual equivalence in PCF in the proof assistant Coq [10]. The final goal
is to give a (possibly simplified) undecidability proof of contextual equivalence of finitary PCF,
a famously hard result in the area of semantics of programming languages due to Loader [6].

Context
In semantics of programming languages, a key aspect is to determine when the denotations of
two programs in a model are equal. The gold standard of denotational semantics if to provide
fully abstract models, where the equality of denotation coincides with contextual equivalence,
providing the maximal adequate equational theory. Since its introduction by Plotkin [9], it
was a long-standing open problem whether a fully abstract semantics can be given for PCF, a
paradigmatic functional programming language. It is a simply-typed λ-calculus with natural
numbers and a fixed-point combinator.

It is easy to see that contextual equivalence in PCF is undecidable, because PCF is Turing-
complete. As a consequence, there is no computable, fully-abstract model of PCF – such a
model would give rise to a decision procedure of contextual equivalence. Restricted to finitary
PCF, the fragment of PCF with booleans and a constant ⊥ representing non-termination, it
was expected that a model would be effectively computable. This means that a fully abstract
model would provide a decision procedure for contextual equivalence for this fragment. However,
Ralph Loader proved that contextual equivalence for finitary PCF is undecidable [6], closing
negatively the quest for a fully abstract model for PCF. The undecidability proof is famously
hard and technical, and not presented in text books on semantics or computability. It is by
reduction from the word problem of first-order string rewriting systems (so-called semi-Thue
systems).
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Coq’s type theory is the ideal ground to give machine-checked undecidability proofs: The
Coq library of undecidability proofs [4] provides a library of problems which are all shown
undecidable and can be used as starting point for undecidability proofs by reduction. The
proofs in the library rely on a so-called synthetic approach to undecidability [3], based on the
fact that all functions definable in constructive type theory in general and Coq in particular
are computable. Since we know that the halting problem of Turing machines cannot have a
Coq decision function (because such a function is not computable), any problem the halting
problem many-one reduces to can also not have one. This insight is used as the basis of a
definition of undecidability which does not have to rely on a formal model of computation,
thereby circumventing tedious formalisation of such models.

Objectives

The aim of this project is to give a Coq proof of the undecidability results for PCF and finitary
PCF, possibly with some intermediate results to test strategies or simplify the final proof.

For PCF there exist various undecidability proofs of contextual equivalence, all intuitively
amounting to proving that PCF is Turing complete. Concretely, it is necessary to give a many-
one reduction from the halting problem of any Turing-complete language to PCF, or more
generally from any undecidable problem. To formalise the undecidability proof in Coq, it is
important to first find the simplest possible undecidability proof. Usually, and contrarily to
text book proof sketches, simple and fully formal undecidability proof do not start at the halt-
ing problem of Turing machines, but rather with computational models such as two counter
machines as introduced by Minsky [8, 2], FRACTRAN as introduced by Conway [1], or for-
mulations of solvability of Diophantine equations as in Hilbert’s 10th problem [7, 5]. The first
challenge of the project is to identify a suitable starting problem for a reduction, formalise
it, and give the proof in Coq. The starting problems can be chosen from the Coq library of
undecidability proofs.

Second, the same strategy is used for Loader’s result that contextual equivalence in finitary
PCF is undecidable: Analysing whether a more suitable starting problem than semi-Thue
systems is available, formalise the reduction, and give the proof in Coq.

We expect a student to gain new knowledge in undecidability proofs and programming
language semantics, and acquire or hone existing skills in the Coq proof assistant. While a
familiarity with typed lambda calculi and basic skills in Coq is required, all further knowledge
can be acquired during the project. An outstandingly successful completion of the project could
potentially be published at a conference like Interactive Theorem Proving (ITP) or Certified
Programs and Proofs (CPP).
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